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A probability model that seems to reflect 
the spirit of the Guttman scale model was used 
in an earlier paper [Proctor, 1970] to furnish 
an analysis of item response data. By using 
the estimates for the probability model provided 
there and by assigning integer scores to the 
true types, it becomes possible, as this note 
will describe, to calculate a reliability for 
these scale scores. The calculation involves 
the use of both the estimates of the proportions 
of the underlying true types as well as of the, 
so called, misclassification parameter. This 
is a conditional probability with the following 
meaning. If a subject belongs to a given true 
type then his responses to each item can be 
anticipated and the misclassification parameter 
is the probability that his response to a given 
item is opposite from that anticipated. By 
assigning equal probabilities to all true types 
an alternative reliability, called "flat" 
reliability, can be calculated. It is quite a 
bit simpler to associate a standard error to 
the flat reliability than to the scale reliabi- 
lity, and the quantity may also be more 
intrinsically interesting. 

The assignment of integer scores to the 
true types, to some extent runs counter to the 
spirit of the ordered category, rather than 
numerical, nature of the true types. In data 
handling practice, scores may be preferred, to 
just the category assignment, particularily 
for use in a regression computation, conse- 
quently some measure of reliability would be 
welcome for correcting regression coefficients 
and multiple correlation coefficients for 
attenuation [Cochran, 1970]. 

The scoring may be described as follows. 
A response pattern will be represented, as 
usual, as a string of plusses and minuses. The 
integer scores 0, 1, K will correspond to 
the true type patterns (namely -- 

...+, , -+...+, ++...+) with that number 
of plus responses. A non -scale response 
pattern will be scored for that true type 
which maximizes its (the non -scale response 
pattern's) posterior probability. The prior 
or underlying probabilities of the true types 
(namely, el, will be estimated by 

the maximum likelihood scoring method along 
with the probability of misclassification, 
These estimators were described in the earlier 
paper [Proctor, 1970]. The posterior proba- 

bility of the true type for a given, say 
th 

the i response pattern, is obtained by 

multiplying by 
-DBE, 

where 

is the number of item responses that need to be 
changed to modify true type into observed 
response pattern i." The hat notation signals 
the use of estimates. 
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The true type scores may be denoted by T 
and the response pattern scores by X. The 

correlation between these two random variables 

could reasonably be referred to as the index of 

Guttman scale score reliability while its square 
will be called the scale reliability and 
written SR. [See Lord and Novick, 1968, p. 61, 

for the definition of reliability.] The joint 

distribution of and X is fully specified by 
the parameters e0, ., OK, and and by the 

scheme for scoring. Having point estimates of 

these parameters, it is a routine matter to 

calculate the scale reliability (SR, say) as if 

these were the parameter values. This produces 

a consistent estimate of scale reliability. 

In some respects it is unfortunate that 

the reliability of a scale should depend on the 

underlying distribution of the true scores. If 
as a standard distribution of true scores one 

takes the uniform (each T -value has probability 

1 /K+1) and if the response patterns are scored 

by the number of plusses, then the correlation 
between true score and observed score depends 
only on the misclassification parameter. The 

square of this correlation will be called flat 

reliability -- "flat" in honor of the uniform 

distribution of T. The following results point 

out how the formula for flat reliability is 

derived. 

The observed score X is now the sum of 
item zero -one scores, say X X1 + X2 + + XK 

Here X1 = 1 whenever a true type T = 1 appears 

(which appearance has probability 1 /K +1) and the 
response is a consistent one, or when other true 
types appear (each with probability 1 /K +1) and 

the response is not consistent. Upon recalling 
that the quantity is the probability of an 

inconsistent (or "misclassified ") response while 

1 -a is the chance of a response consistent with 

the true type one obtains: 

E(X1) = [Ka + (1-0)1/(K+1). 

Similarily, 

E(X2) = [(K -1)a + 2(1- a)]/(K+1). 

Finally, 

(1) E(X) = K/2. 

By slightly heavier algebra one can find: 

(2) E(X2) = K/2 + K(K -1)[1 - a(1- 



and 

(3) v(x) = E(X2) - 

K(122) [1 - 
4a(1-a) 

] 

Incidentally, the fact is often used that the 
sum of the squares of first K integers is 
K(K +1)(2K +1)/6. Their sum is K(K +1)/2. 
Formula (1) was obtained by squaring X1 + X2 
+ + using the fact that E(Xi2) = E(Xi) 

for these indicator variates, and then by 
finding E(XiXi) as the sum of 3 parts- -one from 

those true types where =1 and X = 1 arises 

from two consistent responses [with probability 

(1 -a)2], another where = 1 is produced by 

two inconsistent responses [with probability 
and the third case where Xi = 1 and X = 

reflects one inconsistent and the other a 
consistent response [with probability -a)]. 

By similar steps one finds that: 

(4) E(T) = K/2 

and 

(5) E(T2) = (2K2 + K) /6 , 

while 

(6) V(T) 
K K +2 
12 

(7) E(TX) = [K(2K +1) - +2)]/6 

and 

(8) Cov(T,X) = K(K +2)(1- 2a)/12. 

The final step is to square Cov(X,T) and 
then divide by V(X) and by V(T) to get: 

(9) FR = (1 - 2a)2/[l - 

the formula for flat reliability of a Guttman 
scale. It is apparent that a probability of 
misclassification of over 0.5 will cause 
reliability to go below zero. That is, 
"guessing" will cause reliability to decrease. 
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A As an estimate of FR one would replace 
by as obtained from the maximum likelihood 
estimation calculations. Since that computa- 
tional routine also provides a standard error 
Lor a an approximate one can be furnished for 
FR. taking the derivative of FR with respect 
to substituting for min that expression 
and then multiplying its absolute value into the 
standard error of a this standard error becomes: 

12 
( 
1 - 2a)[S.E.(a)] 

(10) SE.(FR) 
(K+2)[1 - ]2 

A set of data that showed á,,= .0780 with 
= .00764 would thus show FR = .852 with 

S.E.(FR) = .016. This set of data is No. IV in 
TabAe.1. The scale reliability was estimated 
as SR = .872 for those data. As might be 
expected there is quite close numerical agree- 
ment between SR and FR over various sets of data 
(See Table 1). There would seem to be some 
advantages to FR since it is standardized for 
the distribution of true types, and this uniform 
distribution could be seen as a somewhat ideal 
distribution for Guttman scaling purposes. In 
cases where the underlying distribution is not 
close to uniform (as for data Set I in Table 1), 
here SR may be ̂different from FR (in fact 
FR = .66 while SR = .72 for those data). 
Perhaps the full range of integer scores would 
not be entirely appropriate for these data. 

FOOTNOTES 

* Computer time was made available for 
this work from a National Science Foundation 
grant to the Triangle Universities Computer 
Center. 
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TABLE 1. Guttman Scale Reliability and Flat Reliability for Six Sets of Data * 

Set 

True Type Proportions 

el e2 e3 

Misclassi- 
fication 

Scale 
Reliability 

SR 

Flat 
Reliability 

FR ± S.E.(FR) 

I .17 .01 .08 .09 .07 .59 .163 ± .014 .720 .661 ± .035 

II .05 .15 .23 .25 .13 .19 .038 ± .006 .925 .932 ± .012 

III .11 .12 .27 .26 .20 .03 .074 ± .009 .818 .861 ± .018 

IV .24 .15 .22 .13 .08 .18 .078 ± .008 .872 .852 ± .016 

V .14 .10 .14 .30 .21 .11 .028 ± .005 .951 .951 ± .010 

.33 .11 .14 .13 .17 .13 .051 ± .010 .932 .907 ± .019 

* Source [Hayes and Borgatta, 1954]. 
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